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Hierarchical lattices: some examples with a comparison of 
intrinsic dimension and connectivity and Ising model 
exponents 

J R Melrose 
Department of Physics, University College Cardiff, PO Box 78, UK 

Received 12 July 1982 in final form 28 March 1983 

Abstract. The recently recognised class of hierarchical lattices is examined through a 
number of examples. Definitions of length, intrinsic dimension and connectivity are made 
and used to discuss variations of exponents calculated on the Ising model. Generalisations 
of regular lattice results are found for exponents at discontinuity fixed points and in 1 + E  

dimensions. 

Recently many hierarchical lattices which support exact solution have been introduced 
(Gefen et ai 1980, Dhar 1977, Nelson and Fisher 1975, Berker and Ostlund 1979, 
Kaufman and Griffiths 1981, 1982a, b). Hierarchies are defined as the infinite limit 
of an iterative generation of larger and larger lattices. Those studied will be termed 
bond hierarchies, starting from a single bond at each iterative step a larger lattice is 
formed by decorating each bond of the previous lattice with some basic cell (see figure 
1). Decimation transformations on hierarchies trivially factor and constitute an exact 
renormalisation group. 

Hierarchies are often highly inhomogeneous and lack translational invariance. The 
lattices can support a wide variety of phase transitions although they can also exhibit 
unusual features (Kaufman and Griffiths 1981, 1982a). Many decimation approxi- 
mations on regular lattices (Barber 1975, Migdal 1975, Kadanoff 1976, Reynolds er 
a1 1977) consitute exact solutions on hierarchies. 

In this work exploration is made of the relationships between critical exponents 
of the Ising model on the hierarchies and two parameters, the intrinsic dimension 
(McKay er a1 1982) and the connectivity (Gefen er a1 1980). There are many, as yet 
unclassified, varieties of hierarchies. The examples studied here were chosen for their 
intuitive simplicity and involve only nearest-neighbour couplings. Definitions below 
are restricted to these examples. 

Figure 1. The first two steps in the iteration sequence of a hierarchy (cell 2a below). 
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A classification is introduced: set the cell dimension, d,, as that of the basic 
cell. Some examples with d, = 1 to 4 are shown in figures 2 and 3. Each cell has two 
special vertices, the nodes, between which the decoration is defined (cf 2a with figure 
1). The parametrised family of cells in ( la )  of figure 2 are members of the Migdal- 
Kadanoff hierarchies (MKH) on which the well known Migdal-Kadanoff approxima- 
tions are exact (Berker and Ostlund 1979). Some of the examples are finite cluster 
approximations on regular lattices. Two parameters useful below are g, the aggregation 
number, the number of bonds on the basic cell, and 4 the minimum cut, the minimum 
number of bonds which need be cut on the basic cell to separate the nodes. On the 
MKH g = M A  and 4 = M ;  other values are given in table 1. 

I l a  I I201 1 2 b l  1 2 c  I I 2d I 1 2 e  I 

Figure 2. Some basic cells of hierarchies with d, = 1 and 2. Examples are labelled with 
d, and a letter. Nodes are shown as open circles (cf 2a with figure 1). 

1 3 a l  1 3 b l  1 3 c J  i 3 d l  1 3 e l  i 40 1 1 L b  I 

Figure 3. Some basic cells with d, = 3 and 4. 

Kaufman and Griffiths (1981) note the problem of defining length and dimension 
on the hierarchies; however, here such definitions will be made. The distance between 
two vertices is defined as the number of bonds on the shortest path on the lattice 
between the vertices. The scale change associated with the renormalisation step, 6, 
is the distance between the nodes on the basic cell. The n th lattice in the iterative 
generation will be associated with a length b”. This definition is independent of any 
embedding of the hierarchy in a Euclidean space. (Note that the number of minimum 
paths between the nodes of the n th lattice will grow, in the simple cases, as p‘bn’-” ’b- ’ ’ ,  
where p is the number of minimum paths on the basic cell.) 

Define respectively the intrinsic dimension, D, and connectivity, Q, by 

D = log(g)/log(b) and Q = log(q)/log(b). (1) 
D and Q are defined on the cells and are the exponents which govern how respectively 
the number of bonds on the lattices and the minimum cut on the lattices grow as 
powers of 6” .  (Note alternative definitions of D and Q (Mackenzie 1981) based on 
the growth of ‘volume’ and ‘surface’ with distance from an arbitrary vertex are 
problematic on the hierarchies due to their inhomogeneity.) On regular lattices 
D ( = d )  = 1 + Q ;  whilst this holds on the MKH in general one finds D > 1 + Q. 
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Both D and Q play roles in phase transitions on the hierarchies. Discussion below 
is made in the context of the Ising model. The treatment of external fields on the 
hierarchies is awkward due to the inhomogeneity of the coordinations. Following 
Yeomans and Fisher (1981) and implicitly Jose et a1 (1977) the Ising magnetic field 
is assigned to the spins in proportion to their coordinations. This allows the Ising 
Hamiltonian to be written 

-/3H = C JSiSj + h (Si + S i )  (Si = *l), 
ij  

Unlike other field assignments (3) remains of the same form under the decimation 
transformation. It is straightforward to generate recursion relations on a computer 
and the conventional analysis was pursued by Niemeyer and van Leeuwen (1973). 
On each example a single unstable fixed fixed point, J * ,  was found. 

The author has obtained the following results. 
( i )  At the T = 0 (discontinuity) fixed point Nienhuis and Nauenberg (1975) and 

Klein er a1 (1976) respectively argue that on regular lattices the scaling eigenvalues 
obey A h  = b d  and A, = bd-' .  On the hierarchies considered here the recursion relations 
for the Ising model have the general forms 

exp(gJ) + LO 

exp(gJ + 2gh) + L O  

4 In( e x p ( g J - 2 g h ) + ~ o  
h ' =  

(3) 

(4) 

where r is the number of minimum cuts on the basic cell and LO means lower order 
in exp(J). From (3) and (4) one finds A h  = g and A ,  = q, or from (I) ,  A h  = b D  and A ,  = b Q  
generalising the regular lattice results. 

(ii) Finitely ramified hierarchies, for the examples here, have q = 1.  Such examples 
have T, = 0 and essential singularities (Gefen et a1 1980). A change of variable, 
i = exp(-2J), is used to describe these singularities. From (3) one finds A I = r. This 
makes specific for all branching Koch curves (q = 1 here) the variations reported by 
Gefen et a1 (1980) (see also Gefen er a1 1983). 

Kaufman and Griffiths (1981) and Dhar (1977) both note that due to the lack,of 
translational invariance the usual correlation function cannot be defined on the 
hierarchies and hence the length exponents Y, and Yh do not have immediate interpre- 
tations. The thermodynamic exponents, however, are well defined (simply substitute 
A, and A h  with g in the usual relations), do have their usual interpretations and are 
independent of b and D. It is therefore of interest to see how the thermodynamic 
exponents vary with D and Q. 

(iii) Table 2 presents exponents found of the cells of figures 1 and 2. The table 
is ordered on increasing D which, as is evident, gives a rough ordering to the exponents. 
The overall variations with increasing D (increasing p, Yh and Y,, decreasing J * ,  S 
and y and a maxima in a) are those expected from consideration of results on regular 
lattices and field theories (Domb 1973, Wilson and Kogut 1974). Values for examples 
with D around 4 do not correspond to those of the E expansion (which is based on 
a continuium treatment of regular lattices). Clearly exponents vary with both D and 
Q (and it is anticipated other parameters which remain to be found). In particular 
the droplet model of Fisher (1967) suggests the relationship d / ( d  - 1)  -- Yh/ Y,) on 
regular lattices; this generalises to the hierarchies as D / Q  = Y h /  Yt. As seen from the 
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table this holds weakly (note that as on regular lattices as D increases Yh/ Y, exceeds 
what is within the droplet model its physical maxima). However, given this relationship 
and that D > 1 + Q it could be anticipated that for a hierarchy of a given D the value 
of y h  would be shifted up and the value of Y, shifted down with respect to those 
values interpolated for the same D on regular lattices with D = 1 +Q. Such a trend 
is clearly shown in the table (e.g. 2e for which Y, C 1 yet Yh > 1.875). Furthermore, 
a breakdown in ordering shown by /3 and S of 3c, 2a and 3d can be understood as 
for these D/Q increases with D in contrast to the trend on regular lattices. Similarly 
2d appears misplaced but has D/Q relatively large. 

It is interesting to investigate families of hierarchies which contain in the limit of 
large basic cells members with specific limits of D and 0. On these examples Y, and Yh 
will be discussed, other exponents being found as usual from these, D and the scaling 
relations. Details of calculations will be published elsewhere. 

(iv) A family, the ladders, on which D + 1  and Q+O is shown in figure 4(a). 
Calculations on these, using transfer matrix multiplication to find recursion relations, 
reveal that as D + 1 J *  -* co h h  + g and A ,  + q(=2)  or Yh +D and Y, + Q. Though 
infinitely ramified the family seems to be approaching a lower critical dimension 
defined by Q = 0, suggesting that this condition rather than finite ramification (Gefen 
er al 1980) should serve to generalise the concept of lower critical dimension to 
hierarchies. Furthermore the above exponents generalise the 1 + E  results found on 
regular lattices (Migdal 1975, Wallace and Zia 1979). 

(v) The MKH form a family completely parametrised by two parameters (M and 
A in l a  of figure 2). Melrose (1983a) finds that contours of constant exponents in the 
(M, A )  space are unique for each exponent and do not follow the contours of constant 
D and Q, although they are close to these contours for low M and A. 

Figure 4. Some families of hierarchies: ( a )  ladders, ( b )  simple strings, ( c )  hyperpyramids, 
( d )  self-duals, (e) squares. 
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(vi) The multiplicity set by M on the MKH can define a family for any basic cell 
by simply considering M cells in parallel connected at the nodes. M enters recursion 
relations simply as a multiplicative constant. As M + CO, D and Q + CO with D/Q + 1. 
On all examples studied the author finds that as M + mJ* + 0, Ah +Mq and A,  + b or 
Yh + Q and Y, + 1 (a result well known on the MKH (Migdal 1975)). 

(vii) Two other families with D +CO are shown in figures 4(b) and 4(c). The first, 
the simple strings, has D +CO with D / Q  + 1. On these the author finds the same 
limits as under increasing M above. (Note that cells with d, = 2 show a duality akin 
to that of planar lattices. The simple strings are dual to the ladders. It seen that in 
general such dual hierarchies do not have the same D and Q, Melrose (1983b). The 
second family, the hyperpyramids, has D + CO with D / Q  + 2. Explict recursion rela- 
tions may be found for this family, although computation at high d, is still difficult. 
The author finds that A h  + 2q and that Yh + Q + 1 (or Yh + D/2  + 1) this gaussian 
result being consistent with the growing coordinations). Extrapolation suggests, 
however, that 1.58 < Y,(D + C O )  < 1.64. One may find a variety of high D limits, in 
particular examples with Q finite as D + CO. 

(viii) Two families with D + 2 are shown in figures 4(d) and 4(e). The first, the 
self-duals, has been well studied in the guise of a square lattice approximation (Martin 
and Tsallis 1981 and references therein). As D + 2, Q + 1, these limits add some 
justification to the suggested convergence of exponents on these cells to those of 
two-dimensional regular lattices. Table 3 shows Y, and Yh for the first three cells; 
note that Yh follows the initial peak in D(Yh here differs from that of Martin and 
Tsallis (1981) due to a different field assignment). The second family, the squares, 
shows a different behaviour on these as D + 2, Q + 0. Table 4 shows Y, and Yh again 
for the first three cells. Note that Yh follows the initial dip in D. It is interesting to 
note that although in the large cell limit the cell is a square lattice, the hierarchy 
having Q = 0 will show, presumably, the behaviour of a lower critical dimension. 

In conclusion, the breakdown in universality suggested by Gefen et a1 (1980) has 
here been exhibited on exactly solvable hierarchies with T, > 0. The definitions of 6, 
D and Q have been found useful in discussing exponent variations under the freedom 
in Q, generalising regular lattice results at discontinuity fixed points and in 1 + E  

dimensions, and classifying large cell limits of families. The hierarchies clearly can 

Table 3. 

D Q /* Y,  y h  

2.3291 1 0.4407 0.8706 2.1652 
2.3317 1 0.4407 0.9042 2.1847 
2.3073 1 0.4407 0.9132 2.1769 

Table 4. 

D Q J* Yt yh 

2 1 0.6094 0.7472 1.8791 
1.7925 0.5 0.7111 0.6179 1.7333 
1.7737 0.3868 0.7110 0.5595 1.7277 
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show a variety of high D limits. Of course, D and 0 are not complete enough to 
determine all exponent variations (indeed, the droplet model of Fisher (1967) and 
particularly the result (v) above indicate this). Further parameters need to be sought. 
A parameter defined by Dhar (1977) and, separately, Alexander (1982) will be 
discussed in a future publication. 
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Note added in proof. ( I )  For the cells of figures 2 and 3 the cell dimension can be defined as the dimension 
of the least Euclidian space in which the cell may be embedded such that all bonds are of the same length. 
However in general such a useful definition is problematical. (11) The results and parameters given here 
allow an understanding of exponent variations shown by the cells as finite cluster approximations on regular 
lattices. 
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